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Abstract 19 

Perth, Western Australia represents an area where pollutant concentrations are considered low 20 
compared with international locations.  Land Use Regression (LUR) models for PM10, PM2.5 and PM2.5 21 
Absorbance (PM2.5Abs) along with their elemental components: Fe, K, Mn, V, S, Zn and Si were 22 
developed for the Perth Metropolitan area in order to estimate air pollutant concentrations across Perth. 23 
The most important predictor for PM10 was green spaces. Heavy vehicle traffic load was found to be 24 
the strongest predictor for PM2.5Abs.  Traffic variables were observed to be the important contributors 25 
for PM10 and PM2.5 elements in Perth, except for PM2.5 V which had distance to coast as the predominant 26 
predictors. Open green spaces explained more of the variability in the PM10 elements than for PM2.5 27 
elements, and population density was more important for PM2.5 elements than for PM10 elements.  The 28 
PM2.5 and PM2.5Abs LUR models explained 67% and 82% of the variance, respectively, but the PM10 29 
model only explained 35% of the variance.  The PM2.5 models for Mn, V, and Zn explained between 30 
70% and 90% of the variability in concentrations.  PM10 V, Si, K, S and Fe models explained between 31 
53% and 71% of the variability in respective concentrations. Testing the models using leave one-out 32 
cross validation, hold out validation and cross-hold out validation suggested the validity of LUR models 33 
for PM10, PM2.5 and PM2.5Abs and their corresponding elements in Metropolitan Perth despite the 34 
relatively low concentrations.   35 
 36 
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 38 

1. Introduction 39 

Particulate matter (PM) is a heterogeneous mixture of suspended particles and varies in chemical 40 

composition and size (Liang, 2013). Long term exposures to PM mass with an aerodynamic diameter 41 

smaller than 10µm (PM10) and 2.5µm (PM2.5) respectively, have been associated with mortality, 42 

cardiovascular disease, lung cancer, and both chronic and acute respiratory diseases, including asthma, 43 

even at concentrations below ambient air quality standards (Andersen et al., 2012; Beelen et al., 2014; 44 

Cesaroni et al., 2014; Hoek et al., 2013; Raaschou-Nielsen et al., 2013). 45 
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The composition of PM may be important in determining the contribution of particular sources.  46 

A source apportionment study conducted in four Australian cities identified species-related sources of 47 

PM, including aluminium (Al) and silicon (Si) from crustal/soil dust; iron (Fe), copper (Cu), zinc (Zn) 48 

and Manganese (Mn) from motor vehicle emissions; potassium (K) from biomass burning emissions; 49 

and heavy metals (Fe, Cu, Zn) from industrial emissions (Chan et al., 2008; Larson et al., 2004). 50 

There is some evidence that the composition of PM may also be important in determining health 51 

effects (Eeftens et al., 2014; Stanek et al., 2011). PM10-associated zinc (Zn) has been associated with 52 

the risk of pneumonia among children in seven birth cohort studies in Europe (Fuertes et al., 2014).  53 

PM2.5-associated nickel (Ni) and vanadium (V) have also been associated with daily mortality in time-54 

series studies in two northern American cities (Zhou et al., 2010). Small decreases in lung function 55 

among young children have also been related with exposure to other PM-associated elements such as 56 

Cu, Fe, K, Si, sulfur (S) and Zn (Eeftens, et al., 2014). 57 

There are relatively little data available on the intra-urban speciation of PM10 and PM2.5 for 58 

estimating exposures in large population-based health studies in Australia. Land Use Regression (LUR) 59 

models have been used to predict small-scale spatial variations in exposure to air pollutants including 60 

species of PM, within cities in other location (Gulliver et al., 2011; Hoek et al., 2008; Zou et al., 2009). 61 

The recent European Study of Cohorts for Air Pollution Effects (ESCAPE) developed PM speciated 62 

LUR models for eight elements in 15 countries. Most of those LUR models explained a large fraction 63 

of the spatial variation within the study area with R2 ranging from 50% and 79% (de Hoogh et al., 2013) 64 

and were used to investigate the associations with a range of health outcomes (Eeftens, et al., 2014). 65 

This paper describes the development of LUR models for PM10, PM2.5, PM2.5Absorbance (PM2.5Abs), 66 

and PM-associated elements (Cu, Fe, K, V, S, Si, Zn, Ni, and Mn) for the Perth metropolitan area, 67 

Western Australia, an area with lower air pollutant concentrations compared with most European and 68 

North American cities. The models were then used to assign exposures to PM and PM elements for a 69 

cohort of older men in Perth, the Health in Men Study (HIMS) (Norman et al., 2009). 70 

 71 
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2. Methods 72 

2.1. Area of study 73 

The study was conducted in the Perth Metropolitan Area which is the capital of Western 74 

Australia.  It is located on the Indian Ocean with the Darling Ranges to the East, and with two main 75 

waterways, the Swan and Canning rivers.  Perth metropolitan area has an area of 6,418 km² and the 76 

population was around 1.97 million in 2012.  Its topography is mainly flat with an altitude of 77 

approximately 31.5 m above sea level and a Mediterranean climate (Yimin et al., 2003).  78 

 79 

2.2. Sampling sites selection 80 

The monitoring site selection has been described elsewhere  (Dirgawati et al., 2015). Twenty 81 

sites were selected to measure PM2.5 and PM10, comprising two regional background sites; eight urban 82 

background sites; and ten street sites based on the criteria describe in the protocol for the ESCAPE 83 

study (http://www.escapeproject.eu/manuals/). One of the regional background sites was co-located at 84 

a monitoring station operated by the Western Australian Department of Environment Regulation for 85 

comparison with standard government monitoring. A reference site was also operated continuously 86 

throughout the sampling period to adjust for any temporal variability of particle concentrations between 87 

seasons.  Figure 1 shows a map of the sampling sites.  88 

 89 

Figure 1 Air sampling sites for PM10, and PM2.5 across Perth Metropolitan Area, Western Australia, 2012 (Dotted 90 

line indicates boundaries of the Perth Metropolitan Area). 91 

http://www.escapeproject.eu/manuals/
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2.3. Sampling and analysis method 92 

Following the ESCAPE protocol, sampling occurred over three seasons, summer, autumn and 93 

winter from January 31 to September 5, 2012, at 20 sites, shown in Figure 1.  Samples were collected 94 

from each site for a two-week period in each season, with a maximum of six sites being monitored 95 

concurrently.  This resulted in four sampling periods per season.  The reference site was operated 96 

continuously throughout 2012.   97 

Harvard Impactors (MS&T, Air Diagnostics and Engineering Inc. Harrison, ME) were used to 98 

collect PM2.5 and PM10 samples onto Teflon filters (37mm 2um pore size PALL Life Sciences PTFE 99 

Membrane).  Sampler flow rates were 10 litres per minute ± 5% and recorded before and after the 100 

collection. Samples were collected for 15 minutes every 2 hours to prevent overloading so that a 42-hr 101 

sample was collected over two weeks.  The sampling time and the mean flow rate values were then used 102 

to calculate the sample volume. All individual samples at all sites were checked to decide whether the 103 

sample were valid to precede subsequent analyses. Valid samples of PM mass are those with total 104 

sampling time of at least 67% of 42-hr over fourteen days were included in subsequent analyses.  Those 105 

considered as invalid samples (n=9) were removed from subsequent analyses.  106 

Valid filters were weighed after being placed in the weighing room at a temperature of 23±1oC 107 

and relative humidity of 37±2% for 48 hours. The pre and post weighing was undertaken on a 108 

microbalance to obtain mass values as described in the ESCAPE protocol 109 

(http://www.escapeproject.eu/manuals/). The mass was then divided by the sample volume to determine 110 

the corresponding concentrations of PM10 and PM2.5. The PMcoarse concentrations were obtained by 111 

subtracting PM2.5 from PM10 concentrations.   112 

Reflectance was measured on all PM2.5 post-weighed samples using a Smokestain reflectometer 113 

(EEL43M Smokestein Reflectometer (Diffusio System Ltd)). Reflectance was transformed into 114 

absorbance according to the International Standardization Organization method (1993) (Eeftens, 115 

Beelen, et al., 2012). The measurements were limited to PM2.5 filters as most of elemental carbon has 116 

been found in PM2.5 fraction (Ref: EEftens). All PM mass and reflectance samples were prepared and 117 

analysed at the School of Natural Sciences laboratory, Edith Cowan University.   118 

http://www.escapeproject.eu/manuals/
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Filters were then analysed for 48 elements by energy dispersive X-ray fluorescence (ED–XRF). 119 

These analyses were undertaken by Cooper Environmental Services, Portland, Oregon, USA.  120 

Elemental concentrations were calculated by multiplying the reported mass per area of an element 121 

(µg/cm2) with the exposed filter area (7.8 cm2), subtracting the mean field blank and dividing by the 122 

individual filter’s sample volume (de Hoogh, et al., 2013). 123 

The elements were selected for LUR model development based upon environmental emission 124 

characteristics, high percentage of detectability (more than 75% of detected samples), and evidence of 125 

impact on human health (de Hoogh, et al., 2013) and attribution of particular sources (Bukowiecki et 126 

al., 2010; de Hoogh, et al., 2013; Zhang et al., 2015).  Using these criteria, nine elements for Perth were 127 

identified, included Cu, Fe, and Zn for anthropogenic and traffic sources; K for biomass burning; S, and 128 

V for fossil fuel combustion; Si for soil and dust; Mn and Ni for industrial activities.   129 

 130 

2.4. Quality assurance 131 

Blanks and duplicate samples were collected for PM10 at the reference site only. Field blanks 132 

were collected at 19 time points throughout the annual sampling period.  The duplicate samples were 133 

used to test the precision of the measurements and were assessed by calculating the absolute value of 134 

the difference between one instrument reading and the mean of the two, divided by that mean. 135 

The limit of detection (LOD) was generated as three times the standard deviation of the field 136 

blanks.  The LOD for PM mass was 0.56 μg/m3.  The LODs provided by the ED–XRF for V, Si, K, S, 137 

Fe, Mn, Zn, and Cu were  2.6 x 10-5 μg/m3, 8.4 x 10-4 μg/m3, 2.1 x 10-4 μg/m3, 1.8 x 10-4 μg/m3, 2.9 x 10-138 

4 μg/m3,  4.8 x 10-5 μg/m3, and 7.5 x 10-5 μg/m3, and 8.6 x 10-5 μg/m3 respectively.   139 

The measured concentrations of individual samples of PM10, PM2.5, PMcoarse, and PM2.5Abs that 140 

were below the LOD were assigned by a random value between 0 and the LOD. Elements were excluded 141 

from further evaluation if 25% or more of the samples were below the LOD.  Concentration of 142 

individual samples below the LOD were not replaced with any other value, resulting in some negative 143 

values after the blank corrections (subtract the mean field blank from the sample values) were applied.   144 

  145 
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2.5. Calculation of annual average concentration  146 

There were six Harvard Impactors available and hence the maximum number of sampling periods 147 

per season was four to enable the rotation of instruments to the varying locations. While the 148 

measurements were conducted to capture spatial variability, differences in the measured concentrations 149 

among the sites may exist because of temporal variations.  Therefore, the concentrations at all sites 150 

across the three sampling seasons were adjusted using data from the reference site operated every two-151 

week for the whole year 2012.  A temporal correction factor for each two-week period within each 152 

season was calculated as the difference between the two week-specific-concentrations at the reference 153 

site and the annual average concentrations at the reference site.  The correction factor was then 154 

subtracted from each measurement for the same two-week period to obtain a site specific adjusted 155 

concentration for each season.  The adjusted seasonal concentrations were averaged to provide adjusted 156 

annual average concentrations for each site.  These procedures were also applied to all elements.  157 

Annual averages for specific elements (Cu, Fe, K, V, S, Si, Zn, Ni, and Mn) were calculated when two 158 

or more seasons of data were available per site.  159 

A scatterplot between unadjusted average concentrations and the adjusted concentrations 160 

including the R2 and the linear regression equation were generated to evaluate the impact of temporal 161 

adjustment (data are not presented here).  PM mass and the elements that were in poor agreement 162 

between the measured and corrected concentrations data were excluded from subsequent analyses.   163 

Further, a correlation matrix of the measured concentrations of PM mass fractions and the 164 

elements was generated to investigate the relationships among these pollutants and differences in the 165 

source profiles. 166 

 167 

2.6. Environmental predictor variables  168 

Environmental potential predictors for developing the models were generated to cover a range of 169 

air pollutant sources that fit the local characteristics of Perth Metropolitan area and categorised as: land 170 

use, population/household density and traffic variables.   171 

The land use variables included buildings, industries, presence of water, proximity to water 172 

bodies, and open green spaces. The variables of buildings and industries were developed based on the 173 
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Planning Land Use Classes (PLUCs) from the Valuer General’s Office (VGO) of Western Australia 174 

Ministry for Planning for the year 2009, while data on water bodies were sourced from the 2009 Western 175 

Australia Land Information Authority (Landgate).   176 

Industries were grouped into: (1) industrial facilities such as manufacturing/ processing/ 177 

fabrication, storage and distribution, and service industry; (2) commercial activities such as shops, 178 

retails, offices/ business, entertainment/ recreational & cultural; (3) primary and rural activities such as 179 

farms & conservation areas; and (4) utilities such electricity, gas, water and waste services, transport, 180 

postal, and warehousing. For LUR model development, three definitions of industry variable were used: 181 

Industry-1 comprised: (1) industrial, (2) commercial, (3) primary/rural, and (4) utilities groups; 182 

Industry-2 comprised: (1) industrial, (3) primary/rural, and (4) utilities; and Industry-3 comprised: (1) 183 

industrial, and (2) commercial activities only. 184 

The building variable represented all surrounding building types including residential buildings.  185 

The water body was characterized by sea, lakes and rivers.  The amount of green spaces was represented 186 

by Normalized Difference Vegetation Index (NDVI), derived from the Landsat satellite data collected 187 

in 2012.  The mesh block count from the Australian Bureau Statistics (ABS) for the year 2011 188 

(www.abs.gov.au/websitedbs/censushoe.nsf) was used to derive the population and household density 189 

data.  Both land use and population/household density variables were measured around the sampling 190 

sites within circular buffers with radii of 100m, 300m, 500m, 1000m and 5000m to illustrate dispersion 191 

patterns of the pollutants being modelled and to capture the spatial variations of pollutant concentrations 192 

at both local and regional scales.   193 

Traffic variables were measured in radii of 25m, 50m, 100m, 300m, 500m and 1000 m to capture 194 

the local impact of potential traffic sources on air pollutant concentrations. Air pollutant concentrations 195 

decline exponentially with the distance to road, and decreases to the background levels behind a row of 196 

uninterrupted buildings (Batterman et al., 2010).   Therefore, traffic variables without buffers such as 197 

traffic intensity on the nearest road and distance to major roads were also determined to account the 198 

influence of nearby traffic emissions at the monitoring sites.  199 

The traffic-related data such as number and type of vehicles on a given road, hierarchy of capacity 200 

of roads, length of roads and location of roads were obtained from the Main Roads WA 201 

http://www.abs.gov.au/websitedbs/censushoe.nsf/home/meshblockcounts
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(www.mainroads.wa.gov.au), collected for the year 2009.  Main Roads WA monitors vehicle counts on 202 

selected roads using counters and calculates annual average daily traffic (AADT), the annual average 203 

number of vehicles travelling in both directions adjusted for season and time of day.  Main Road’s WA 204 

also classifies the roads based upon its capacity including: primary distributor (>15,000 vehicles per 205 

day), distributor A (8,001 – 15,000 vehicles per day), distributor B (6,001 - 8,000 vehicles per day), 206 

local distributor (3,001 – 6,000 vehicles per day), and access roads (<3,000 vehicles per day).  If no 207 

counters were present for a particular road class, the traffic counts from nearby roads of the same class 208 

in the road hierarchy were used to estimate the annual average traffic counts within each site’s buffer. 209 

The nearest distance to a road was obtained by measuring the shortest distance from the monitoring site 210 

to the nearest road.  Heavy duty vehicles included trucks and buses.   211 

In total, 124 potential predictor variables were measured as summarized in the Supplementary 212 

Table S1. The generation of environmental predictor variables used in the development of LUR model 213 

have previously been described (Dirgawati, et al., 2015).  All GIS work was conducted using ArcGIS 214 

version 10.2 (ESRI Inc., 2013). 215 

 216 

2.7. Model development  217 

LUR models were developed to estimate the annual average concentrations of PM and the 218 

corresponding elements (dependent variable) using predictor variables at all monitoring sites.  Prior to 219 

the models development, standardized predictor variables were generated by subtracting the mean for 220 

each predictor from each individual predictor data point and dividing by the SD. Thus, each 221 

standardized variable has a mean of zero and a SD of one. The coefficient generated in the final LUR 222 

model estimates the change in concentrations associated with a one SD change in the predictor.  223 

Descriptive summaries and scatter plots between the adjusted annual average pollutant 224 

concentrations for each site and each predictor variable were used to develop an initial list of 225 

suitable predictors and monitoring sites for inclusion in the modelling.   226 

Suitable predictors for model development were those: (1) with 75% values above zero; and (2) 227 

where the resultant slope was in the expected direction, as determined a priori (for example, green 228 

space is expected to reduce the particulate concentrations, while traffic activity is expected to elevate 229 

http://www.mainroads.wa.gov.au/
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the concentrations).  Predictors within smaller buffer sizes including industry and water within buffers 230 

of 100m and 300m and traffic within a buffer radii of 25m were found to have a considerable number 231 

of zero values (>80%), and thus were excluded from the modelling.  Among the 124 potential predictors, 232 

the total number of suitable predictors to be considered in the models ranged from 44 to 71 predictors.  233 

Limiting the number of predictors considered for LUR models reduce the risk of overfitting that occurs 234 

when large number predictors are considered to explain concentrations at relatively small number of 235 

monitoring sites (Wang et al., 2013; Wang et al., 2012).   236 

The adjusted annual average concentration of PM10, PM2.5, and PM2.5Abs at each site were 237 

checked to detect potential outliers.  If the annual average concentration at a particular site was above 238 

the 95% percentile, the value was determined as an outlier. This site was then evaluated to decide 239 

whether it should be excluded from the modelling, based upon: (1) the stability of the model, i.e. if the 240 

parameter estimates of the model (adjusted R2, direction effect of the predictors) with and without this 241 

site differed considerably; (2) the site location was not representing the site specific environmental 242 

exposure.  As a result, one monitoring site was determined as an outlier, leaving nineteen sites to 243 

develop the LUR models.   244 

The modelling procedure was based on manual stepwise selection techniques, following the 245 

procedures outlined by the ESCAPE protocol (http://www.escapeproject.eu/manuals/). Briefly, 246 

univariate models were run for all suitable predictor variables and the model with the highest adjusted 247 

R
2 

and the expected slope direction for the predictor was used as the starting model for generation of 248 

the multivariate model. The remaining predictor variables were then added one at a time to the starting 249 

model.  Variables were included if they complied with the following criteria: (1) increased the adjusted 250 

R
2 

≥1%, (2) the coefficient agreed with the predefined direction of effect, and (3) did not change the 251 

direction of effect for predictors already in the model.   252 

During the LUR model development for each air pollutant, the univariate analysis might identify 253 

multiple starting models with similar adjusted R2.  This resulting multiple appropriate LUR models for 254 

that specified pollutant.  Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 255 

http://www.escapeproject.eu/manuals/
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values for all models were then reviewed for selecting the final LUR model among the alternate models.  256 

The selected final LUR model was the model with smaller AIC and BIC values.  257 

Further, to determine how much of the variability of each predictor contributed to the air pollutant 258 

concentrations, the R2 of the nested model was subtracted from the R2 of the final LUR model.   259 

 260 

2.8. Model evaluation  261 

The final models were reviewed for multicollinearity, influential observations, and 262 

autocorrelation using diagnostic statistics for multiple regression models. High multicollinearity for 263 

model predictors was determined based on Variance Inflation Factor (VIF) values of more than three. 264 

The influential observation was examined to ensure the model was not affected by one or more 265 

individual sites using Cook’s D value above one. The cut-off and graphical plots between the observed 266 

and predicted values were also reviewed. Moran’s I analysis was performed to investigate the spatial 267 

autocorrelation of the residuals of the final LUR models. 268 

The performance of PM mass and the element models was evaluated using the leave-one-out 269 

cross validation.  Given the relatively small number of monitoring sites and further application of 270 

eligible PM mass models to epidemiological studies in Perth, additional evaluation of PM mass models 271 

was conducted to investigate the true predictive ability of the models and stability of the predictors 272 

included in the models. The methods used, were hold-out validation and cross-holdout validation.   273 

In the leave-one-out cross-validation method, evaluation models were developed using all but 274 

one of the measurement sites and the predicted concentrations were compared with the measured 275 

concentrations at the omitted site (Refaeilzadeh et al., 2009).  The adjusted R2 and the root mean square 276 

error (RMSE) between the predicted and observed concentrations were then calculated and compared 277 

with the original model and the corresponding standard deviation as measures of model performance 278 

(de Hoogh, et al., 2013; Eeftens, et al., 2012). Lower RMSE values typically indicate more stable 279 

models (Hoek, et al., 2008; Mölter et al., 2010).  280 

The hold-out validation used training and test sets in the evaluation procedure. The total number 281 

of suitable monitoring sites for model development (nineteen sites) was equally divided into training 282 

and test sets. Ten sites were selected as training dataset for modelling, and the remaining nine sites were 283 
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used for prediction outsides the training sites.  The sites were randomly selected based on the strata of 284 

site types to ensure proportionate distribution of the street, urban background and regional background 285 

sites.  The selection was repeated nine times to give 10 sets in total.  The predictors variables included 286 

in the model for all sites were used to develop the training models.  Refitting the same predictor in 287 

smaller subsets may have changed the direction of effect of predictors in the training model.  The same 288 

criteria of predictors included in the model was used consistent to obtain the true predictive ability of 289 

the training models.  Further, the squared Pearson-correlation coefficient, which is equivalent to R2 290 

between the measured and the predicted concentrations at the test sites was calculated and the stability 291 

of LUR model’s structure was tested to measure the performance of these models at smaller subsets.  292 

In cross–hold out validation method, one individual site was successively left out, leaving 293 

eighteen sites for developing an evaluation model (Wang et al., 2016). The process was repeated 294 

nineteen times to obtain nineteen evaluation models.  Each of the evaluation model was then used to 295 

predict the concentrations at the site that was not included in developing the model.  This process was 296 

conducted for all evaluation models, resulting the predicted concentrations across nineteen monitoring 297 

sites.  The true hold out R2 was calculated as the R2 between the measured and the predicted 298 

concentrations at these nineteen external sites.  The R2 and the true hold out R2 were then compared 299 

with the full sites LUR model.  The stability of model’s structure was also tested by comparing the 300 

predictors included in the full sites model with those included in the training and evaluation models.  301 

All statistical analyses were undertaken using the statistical software STATA version 12.1 and 13.1 302 

(StataCorp LP, Texas, USA). 303 

 304 

3. Results 305 

3.1. Descriptive statistics of measured air pollutant concentrations 306 

Fifty-one valid samples (85%) were collected from nineteen sites during summer, spring and 307 

autumn, 2012.  For the elements, the precision of the laboratory method had less than 10% variability 308 

demonstrating that the methods were reproducible.  Some of elements (PM2.5 S, PM2.5 Cu, PM10 Ni and 309 

PM2.5 Ni) were unsuitable for LUR modelling. The temporal corrections resulted in poor agreement 310 

between the measured and corrected data for S and Cu in PM2.5.  Both PM10 Ni and PM2.5 Ni were also 311 
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excluded from the modelling as more than 25% of the elements’ samples had concentrations below the 312 

LOD.    313 

Table 1 provides a summary of the descriptive statistics of the temporally adjusted annual 314 

concentrations for all PM and the selected elements for PM10 and PM2.5 for the remaining nineteen 315 

monitoring sites.  Summary statistics of the unadjusted measured concentration for the 48 elements of 316 

PM2.5 and PM10 are presented in Supplementary Table S2 and Table S3, respectively. 317 

Table 1   318 

Descriptive Summary of temporally adjusted annual average concentrations for PM10, PMcoarse, PM2.5, 319 

PM2.5Abs, PM10 elements and PM2.5 elements (N = 19) 320 

 321 

The relationships between the annual averages of PM10, PMcoarse, PM2.5, and PM2.5Abs and the 322 

selected elements are presented in Supplementary Table S4.  A high correlation was observed for the 323 

association between PM10 and PMcoarse (r = 0.95), moderate correlation between PM2.5 and PM2.5 Abs (r 324 

= 0.57), and poor correlation between the PM10 and PM2.5 (r = -0.13). For the PM10 elements, the highest 325 

correlation was observed between PM10 and S (r > 0.5), while poor correlations were observed between 326 

PM10 and the remaining elements.  The PM2.5 was moderately correlated with K, V, Mn, Zn, and Fe 327 

with 0.45< r <0.53.  PM2.5Abs was correlated with PM2.5 Fe, –Mn, and –Zn; PM10 S and –V.   328 

Pollutant Mean Median SD Min Max 

PM mass  (µg/m3):      

PM10 17.1 16.4 5.0 8.9 30.3 

PMcoarse  12.4 10.8 5.5 4.2 26.4 

PM2.5  4.7 4.5 1.6 1.5 7.8 

PM absorbance (10-5m-1):      

PM2.5A  0.7 0.7 0.3 0.2 1.5 

PM10 elements  (ng/m3):      

Si  3.9 x 10-1 3.6 x 10-1 2.4  x 10-1 1.3 x 10-3 7.9 x 10-1 

S 4.9 x 10-1 4.5  x 10-1 1.3 x 10-1 3.4 x 10-1 7.8 x 10-1 

K  1.8 x 10-1 1.9  x 10-1 4.8 x 10-2 9.3 x 10-2 2.8 x 10-1 

V  1.2 x 10-3 1.1  x 10-3 5.0 x 10-4 6.0 x 10-4 2.4 x 10-3 

Mn  5.5 x 10-3 5.1 x 10-1 3.6 x 10-3 1.8 x 10-3 1.7 x 10-2 

Fe  2.9 x 10-1 2.5 x 10-1 1.7 x 10-1 6.4 x 10-2 6.8 x 10-1 

Cu  6.2 x 10-3 4.6 x 10-3 4.4 x 10-3 1.0 x 10-3 1.7 x 10-2 

Zn  9.3 x 10-3 7.5 x 10-3 5.8 x 10-3 7.0 x 10-4 2.3 x 10-2 

PM2.5 elements  (ng/m3):       

Si 8.8 x 10-2 8.8 x 10-2 5.1 x 10-2 5.6 x 10-2 2.4 x 10-1 

K  7.9 x 10-2 7.9 x 10-2 2.0 x 10-2 5.0 x 10-2 1.2 x 10-1 

V  7.0 x 10-4 7.0 x 10-4 3.0 x 10-4 3.0 x 10-4 1.2 x 10-3 

Mn  2.4 x 10-3 2.4 x 10-3 3.7 x 10-3 6.0 x 10-4 1.6 x 10-2 

Fe  8.1 x 10-2 8.1 x 10-2 4.6 x 10-2 2.4 x 10-2 1.8 x 10-1 

Zn 6.5 x 10-3 6.5 x 10-3 5.9 x 10-3 1.8 x 10-3 2.9 x 10-2 



13 

 

   329 

3.2. LUR Models for PM2.5, PM10, PM2.5A and the associated elements 330 

LUR models were developed to predict the concentrations of PM2.5, PM10 and their respective 331 

elements as well as PM2.5Abs using 19 measurements sites across Perth.  The LUR models for PMcoarse, 332 

Cu and PM10 Zn had poor predictive ability (adjusted R2 < 20%) and diagnostics, and are not presented. 333 

Figure 2 illustrates the proportion of the spatial variability in the measured concentrations of PM2.5, 334 

PM10, and PM2.5Abs and the selected elements explained by the LUR models.     335 

 336 

 337 

Figure 2 Proportion of the spatial variability in the measured concentrations of PM2.5, PM10, and PM2.5Abs and 338 

selected elements explained by the LUR models 339 

 340 

The PM2.5 and PM2.5Abs models had acceptable predictive ability with adjusted R2 above 65%, 341 

while the PM10 model had much lower predictive ability. The LUR models captured greater proportion 342 

of the spatial variability in the measured crustal elements (Si and K) and S in PM10 fraction than that in 343 

PM2.5.  The PM2.5 elemental models explained highest proportions in the spatial variability of industrial 344 

related source element (Mn) and vehicle source element (Zn). The variability of industrial/fuel oil 345 

combustion-element (V) in PM10 was better captured than that in the PM2.5. Similar proportion was 346 

observed in the spatial variability of non-tailpipe vehicle source (Fe) in both PM10 and PM2.5.   347 

Complete description of the structure of the LUR models is presented in Supplementary Table 348 

S5, the summary of predictor variables captured by each LUR model and the corresponding unique 349 

contributions is illustrated in Table 2.  For PM10, the most important predictor was green spaces.  In 350 

contrast, heavy vehicle traffic load was found to be the strongest predictor for PM2.5Abs.  Traffic 351 
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variables were observed to be the important contributors for PM10 and PM2.5 elements in Perth, except 352 

for PM2.5 V which had distance to coast as the predominant predictors. Open green spaces explained 353 

more of the variability in the PM10 elements than for PM2.5 elements, population density was more 354 

important for PM2.5 elements than for PM10 elements. 355 
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Table 2 Predictor variables and their unique contributions included in the LUR models for PM10, PM2.5, PM2.5 Abs and their associated elements   356 

Predictors 

Variables 
PM10 PM2.5 

PM2.5 PM10 elements PM2.5 elements 

Abs Si K V S Fe Mn Fe Mn V Zn K 

Open green 

spaces 

5000m 

(33%) 

1000m 

(13%) 
  

500m 

(9%) 
500m (8%) 

5000m 

(3%) 

5000m 

(9%) 

5000m 

(9%) 

1000m 

(16%)  
  1000m (2%)    

Population 

density 
  

100m 

(8%) 
500m (7%)             

1000m 

(15%) 
        

Housing 

density 
              

100m 

(5%) 

100m 

(8%) 
          

Building  
100m     

(4%) 
                          

Industry      
Industry-3a) 

5000 m (11%) 
              

Industry-2b) 

1000m (2%) 

Industry-3a) 

1000m (8%) 
    

Water body    
5000m 

(13%) 

1000m  

(1%) 
            

5000m  

(9.7%) 

5000m 

(13.8%) 
  

5000m 

(7%) 

5000m 

(10%) 

Distance to 

water body  
  

Coast    

(5%)  

Coast     

(1%) 
    

Coast 

(25%) 
          

Coast(28%) 

River (1%) 
  

River 

(5%) 

Traffic 

intensity on 

nearest road  

  
Dist Ac) 

(8%) 
    PDist (7%)         

Dist Ac) 

(14%) 
      

Dist Ac) 

(6%) 

Heavy traffic 

intensity on 

nearest road 

Any 

roads 

(27%) 

                          

Traffic load      

Any roads 

500m  

(25%) 

  
Dist B e) 500m 

(6.6%) 

Any 

roads 

300m 

(45 %) 

PDist 

500m 

(45%) 

Dist B e) 

500 m 

(24%) 

Dist Be) 

500m 

(13%) 

PDist d) 

1000m 

(13%) 

Any roads 

1000m 

(77%) 

  

Any 

 roads 

1000m 

(53%) 

 

Heavy 

vehicles 

traffic load  

  

Dist B e) 

500m 

(3%) 

        

Dist B 

1000m 

(9%) 

              

Road length       

Dist B e)   

500m 

(15.2%) 

                

PDistd) 

1000m 

(3%) 

Dist B e) 

300m 

 (20%) 

Distance to 

road 
   

PDistd) 

(15%) 

Dist Be) (1%) 

PDistd) (2%) 
  

PDistd) 

(4%) 
      

a) Industry-3: Industry variable – definition 3; comprised of industrial and commercial  357 
b) Industry-2: Industry variable – definition 2; comprised of industrial, primary/rural and utilities 358 
c) DistA: Distributor A road (8,001 – 15,000 vehicles per day) 359 
d) PDist : Primary Distributor road (>15,000 vehicles per day) 360 
e) DistB: Distributor B road (6,001 - 8,000 vehicles per day) 361 
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The model diagnostics for PM2.5 and PM2.5Abs using the variance inflation factors (VIF), 362 

Cook’s D and Moran’s I were acceptable (Supplementary Table S6). The VIF and the Cook’s D values 363 

suggest the models do not violate the collinearity and influential observation assumptions. The Moran’s 364 

I for all PM mass fractions and reflectance ranged from 0.083 to 0.970 with a p-value > 0.05, 365 

representing no spatial autocorrelation of the residuals. The elemental models did not violate the general 366 

assumptions for the development of the LUR models except for PM10 Fe, PM10 Mn, and PM2.5 V. 367 

Influential observation measured it.  Based upon evaluation during the model development, it was 368 

observed that the parameter estimates of the models for PM10 Fe, PM10 Mn, and PM2.5 V with and 369 

without this influential site changed considerably.  Therefore, the corresponding site was excluded from 370 

modelling for these elements.  Among the LUR models for the PM10 and PM2.5 elements, we found no 371 

spatial autocorrelation measured by Moran’s I, except for PM2.5 Zn.   372 

Table 3 shows the results of the model evaluation procedures, including the leave-one-out cross 373 

validation, hold out validation and cross-hold out validation. The differences in the adjusted R2 between 374 

the final models and the leave one out cross validation results for PM2.5 was 17% and PM2.5Abs was 375 

15%, indicating the spatial predictive ability of both models are relatively good

 377 

Table 3 378 

Summary of PM2.5 and PM2.5A models evaluation average R2 Validation results of LUR models for 379 

PM2.5 and PM2.5Absorbance 380 

Air 

pollutant 

Leave one out 

cross validation 

(n = 19) 

Hold-out validation Cross-hold-out validation 

Training sets Test sets Training sets Test sets 

(n = 10) (n = 9) (n = 18) (n = 19) 

PM2.5 0.50 0.74 0.47 0.69 0.14 

PM2.5 Abs 0.67 0.74 0.73 0.82 0.61 

 381 

Plots of the measured and the predicted concentrations for both pollutants are shown in 382 

supplementary Figure S1, indicating an agreement between the measured and predicted concentrations.   383 

The hold-out and cross-hold-out validation procedures results also indicated the stability of our 384 

PM2.5 and PM2.5Abs LUR models.  The top four predictors in the final PM2.5 model such as surface area 385 
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of water body, open green spaces, population density, and traffic intensities were dominant in the PM2.5 386 

evaluation models (Supplementary Table S7).  For PM2.5Abs evaluation models, the predictor matched. 387 

Traffic load, industry and commercial area, population density, and proximity to coast were consistently 388 

captured by all evaluation models (Supplementary Table S8).    389 

 390 

4. Discussion 391 

4.1. Air pollutant concentrations 392 

The annual mean concentrations of PM10 (17.1 µg/m3), PMcoarse (12.4 µg/m3), and PM2.5 (4.7 393 

µg/m3) across Perth were below the National Environment Protection Measures (NEPM) for ambient 394 

air quality (20 µg/m3 for PM10 and 8 µg/m3 for PM2.5) (NEPC, 1998) and the WHO annual mean air 395 

quality guidelines (20 µg/m3 for PM10 and 10 µg/m3 for PM2.5) (WHO, 2005). The mean concentration 396 

of PM2.5Abs was 0.67 x 10-5m-1.  There is no corresponding guideline for this pollutant or for any of the 397 

PM elements.  The high correlation between PM10 and PMcoarse reflects the fact that PM10 and PMcoarse 398 

are emitted from similar sources such as non-exhaust emissions and fugitive coarse dust (Keuken et al., 399 

2013), while moderate correlation between PM2.5 and PM2.5 Abs, possibly reflecting that their 400 

concentrations are influenced by complex interaction between local meteorological conditions and the 401 

main source of these pollutants such as vehicles emissions and industrial activities (Keuken, et al., 402 

2013).   403 

PM10 and PMcoarse annual average concentrations were at the lower end of those European cities 404 

participating in the ESCAPE study, which ranged from 14.8–43.1 µg/m3 for PM10; and 6.0–23.6 µg/m3 405 

for PMcoarse. Likewise, the PM2.5 concentrations and the PM2.5Abs concentrations were both lower than 406 

those of the ESCAPE cities, which were 8.3–29.3 µg/m3 for PM2.5; and 0.8 – 3.0 x 10-5m-1 for PM2.5Abs) 407 

(Eeftens, et al., 2012).  The median concentrations of the PM elements were typically lower than the 408 

ESCAPE cities (de Hoogh, et al., 2013) and the Calgary study (Zhang, et al., 2015). Similarly to the 409 

PM mass and the reflectance measures, the concentrations of all PM mass elements in Perth were lower 410 

than those measured in European and North America cities (Ross 2007).  Possible reasons for these 411 

differences between the studies include: (1) air pollutant concentrations in Perth tend to disperse across 412 

the airshed due to its flat topography and strong ocean breezes (Yimin, et al., 2003); (2) the traffic 413 
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intensities on major roads in Perth (<60,000 vehicles per day) are lower than the cities in the ESCAPE 414 

study, which are typically above 100,000 vehicles per day (EEA, 2011); and (3) road networks in the 415 

ESCAPE cities are denser than in Perth (EEA, 2011).  The PM2.5/PM10 ratio is low (0.3), indicating that 416 

sea salt and wind blown dust are possibly responsible for the low PM2.5/PM10 ratio relative to the 417 

European cities (Eeftens, Tsai, et al., 2012). 418 

 419 

4.2. Characterisation of surrounding environment and land use  420 

LUR models identify surrounding environmental and land use characteristics that may help 421 

explain the variability in pollutant concentrations (Hoek, et al., 2008).  Traffic intensity of heavy 422 

vehicles in close proximity to the monitoring site was associated with increases in measured PM10 423 

concentrations, contributing approximately 27% in the explained variability.  More than 90% of the 424 

heavy vehicle fleets in Australia have diesel engines.  Heavy vehicles account for around 25% of all 425 

road transport fuel consumed in Australia, thus they potentially contribute more to traffic exhaust (ABS, 426 

2014).  The LUR models for PM10 in European cities such as Manchester, London and Ruhr Area, have 427 

also included heavy vehicle traffic intensity in their models (Eeftens, et al., 2012).   428 

Traffic variables were included in the all elements models of PM10 and PM2.5 fraction.  Keuken 429 

et al., (2013) reported that Zn in particulates found in nearby roads originate from tire ware as its use 430 

as galvanised materials in rubber production and re-suspended road dust. Fe was found to be emitted 431 

from metal wear in the exhaust systems walls as flakes of iron and it is considered as a good marker for 432 

brake wear emissions (Keuken, et al., 2013).  Fe can also be emitted from tailpipes, formed within the 433 

engine due to gas to particle conversion processes of the ferrocene, an agent to raise octane level of 434 

diesel and gasoline fuel (Srimuruganandam et al., 2011). K is related to emissions from the ash fractions 435 

of diesel exhausts (Srimuruganandam et al., 2012), and Mn is emitted from brake lining dust (Grigoratos 436 

et al., 2015; Srimuruganandam, et al., 2011).  Traffic-related emissions are not specific sources for V 437 

and S in the PM10 fraction, as these elements are also emitted from fossil fuel combustion in industries 438 

(Murillo et al., 2013; Srimuruganandam, et al., 2012).  Most of the models variables appear attributable 439 

to the resuspended road dust.  440 
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Asphalt roads comprise 95% mineral grains (Ca, Al, Si, Na, K) and 5% filler and binding 441 

materials (Srimuruganandam, et al., 2012), suggesting Si may arise from road wear of asphalt roadways. 442 

Compared with the other elements’ models that included many traffic intensity or traffic load predictors, 443 

the LUR model for Si uniquely included distance to major road and length of major road. Therefore, 444 

the LUR model indicates the contribution of the re-suspended dust or paved road dusts to the 445 

concentrations of crustal elements in PM10.   446 

The models for PM2.5, and PM2.5Abs showed that population density within the smallest buffer 447 

sizes (100m and 500m) contributed to the increase in their concentrations.  Population and housing 448 

density are associated with various anthropogenic sources including residential activities such the use 449 

of wood stoves and heaters, as well as tailpipe and non-tailpipe emissions of traffic servicing this area, 450 

as reported previously for other areas (Eeftens, et al., 2012; Urman et al., 2014).  Wood stoves and 451 

heaters are top emission sources of PM2.5 in Australia as documented by the National Pollutant 452 

Inventory (NPI, 2014). 453 

Population and housing density were also included in the Fe – PM2.5 and Mn – PM10 LUR 454 

models, respectively.  Fe is related to the dominant vehicle emissions, brake, and road wear, while Mn 455 

is mainly attributed to re-suspension of road dust reflecting the contribution of traffic servicing 456 

residential area.  The results are as expected, given higher number of street sites relative to the urban 457 

background and regional sites. 458 

Our LUR models identify industrial activities (manufacturing, processing and fabrication) and 459 

commercials (shops, retails, offices, entertainment, recreational & cultural activities) located within 460 

5000m were modest predictors for PM2.5Abs and PM2.5 V, and minor predictors for PM2.5 Mn. Such 461 

results support evidence that traffic variables are the major air pollution source for airborne PM2.5 Abs 462 

and PM2.5 in Perth airshed.  Refinery/residual oil combustion for industrial activities has been shown to 463 

be indicator of V, and steel making has been the primary contributor of Mn (Chow et al., 2002).  Zhang 464 

et al., (2015) also identified alternative predictors for Mn including industrial facilities.  De Hoogh et 465 

al., (2013) identified sources of V to be industrial and fuel oil combustion-related.  Both could also be 466 

the sources in Perth, given that oil combustion is one of the major air pollution sources in industrial area 467 

in Perth (NPI, 2013).  468 
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The influence of the proportion of green space and water in an area resulted in the reduction of 469 

all of the PM and elemental concentrations within a range of buffer sizes.  The LUR models for PM10 470 

and all the associated elements characterised green spaces predominantly within buffer sizes of 500m, 471 

1000m and 5000m.  Such associations between greenness and PM mass have also been found in other 472 

studies, suggesting plants and trees in open spaces play an important role in improving air quality and 473 

reducing the concentrations of particulates (Eeftens, et al., 2012; McDonald et al., 2007). The observed 474 

association between the greenness and PM mass concentrations may related to the proportion of green 475 

spaces that account for almost 16% of the total area of Perth (ABS, 2012) and possibly lower traffic 476 

intensities in open green and water areas. Our PM models are consistent with LUR models for ESCAPE 477 

and for North American cities that included urban green and natural land use within large buffer sizes 478 

(1000 or 5000 m)  (de Hoogh, et al., 2013; Eeftens, et al., 2012; Ross et al., 2007).     479 

Off shore shipping are known to be indicators of V (Chow, et al., 2002), thus shipping activity at 480 

ports may one of the emission sources for V. Although the variable of ports did not considered in model 481 

development because there were 90% zero values around the monitoring sites, the V model included 482 

distance to coast, which contributed 25% and 28% to the increase in the concentrations of V in PM10 483 

and PM2.5 respectively.  The LUR models, therefore, indicate the importance of the emission oil 484 

combustion of ship movement activities on the nearby coast to the V concentrations.   485 

 486 

4.3 Spatial variability of air pollutant concentrations

We observed differences in the performance of each LUR model for explaining the spatial 488 

variability of particulates and their elements in Perth. The majority of the LUR models were able to 489 

explain more than 50% of the pollutant’s spatial variability.  There were some exceptions which 490 

included PM10, PM10 Mn, PM2.5 V, and PM2.5 K which only explained between 30 – 45% of the spatial 491 

variability.  The absence of specific predictor data for those species may limit the models’ performance.  492 

For example, fugitive dust to explain the PM10 concentrations, refinery/residual oil industries and off 493 

shore shipping as the sources of V, steel industries as the primary contributor of Mn, and wood burning 494 

for K were not incorporated as potential environmental predictors in the modelling process.  Consistent 495 

with previous studies in Europe and North America that suggest small variations in the measured 496 
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element concentrations, lack of specific predictors and poor precision of measurements in areas with 497 

low concentrations are the main reasons for a poor R2-model and R2-LOOCV (de Hoogh, et al., 2013; 498 

Eeftens, et al., 2012; Ross, et al., 2007) 499 

 The model R2 of  PM2.5 was comparable with those in the ESCAPE study areas which ranged 500 

from 49% to 89% and were slightly higher than those reported in North America (Ross, et al., 2007).  501 

The predictive power of the PM2.5Abs model was also similar to the ESCAPE results (between 56% 502 

and 95%), while for the PM10 model, the predictive ability was lower than those in the ESCAPE (50%-503 

90%) (Eeftens, et al., 2012). The PM10 elemental models explained between 34% and 71% of the 504 

variability with only Fe, Zn and Cu performing poorly in comparison to the average R2 for the ESCAPE 505 

models across all cities.  The PM2.5 elemental models explained 36% – 90% of the concentration 506 

variability. Our Fe and K models performed less well in comparison with ESCAPE but our V and Zn 507 

models were able to explain a larger proportion of the variability than ESCAPE (de hoogh et al., 2013). 508 

The stability of our LUR models is also indicated by the results of the evaluation procedures.  The 509 

differences in adjusted R2 values between the model and the LOOCV were 17% for PM2.5, 9% for PM10, 510 

and 15% for PM2.5Abs.  For PM10, PM2.5 and PM2.5Abs, the RMSE of LOOCV and models were smaller 511 

than the corresponding standard deviation.  For both PM10 and PM2.5 elements, the differences between 512 

the adjusted R2-model and -LOOCV were within 15% suggesting the stability of the models, except for 513 

PM10 Mn (19%) and PM2.5 K (26%).  RMSE values that were obtained from LOOCV were found to be 514 

higher than those RMSE models.  However, when the RMSE were assessed relative to the range of 515 

measured air pollutant concentrations, we found small differences between the LOOCV and the models 516 

i.e. 9% for PM2.5 and 6% for PM2.5Abs, demonstrating the stable models.   517 

From the hold out validation method, the PM2.5 training models have larger average R2 compared 518 

with the full-sites model, indicating over fitting.  The results from the cross hold out validation method 519 

showed that the adjusted R2 of PM2.5 models based on the full sites and 18 sites were similar.  However, 520 

the true hold-out R2 underestimated the models’ predictive ability at the site that was not used for 521 

developing the PM2.5 models.  For PM2.5Abs, the average R2 of training models from the hold out 522 

validation and evaluation models from the cross hold out validation were similar to the adjusted R2 of 523 

the full sites models.  The training and evaluation models estimated the true predictive ability of the 524 
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models at the external sites in the acceptable range, consistent with the LOOCV results which 525 

demonstrate the stability of the PM2.5Abs model. 526 

 527 

4.4. Limitations and generalizability 528 

Our LUR models used a smaller number of sites compared with previous studies that had suggested 529 

a larger number of monitoring sites (>80 sites) were required (Basagaña et al., 2012).  However, the 530 

number of sites is consistent with the ESCAPE protocol.  Overfitting may have occurred because of a 531 

large number of predictors (124 predictors) that were included in developing the models relative to the 532 

small number of sites (19 sites) (Basagaña, et al., 2012; Wang, et al., 2012).  Despite the relatively small 533 

number of monitoring sites, this study has developed LUR models at an acceptable performance level 534 

with lower risk of overfitting as we implemented selection procedures for suitable predictors prior to 535 

modelling.   536 

The availability of predictor data may also limit our model generalizability.  Data on traffic 537 

intensities on relevant roads were obtained by using the available traffic counts. In addition, the 538 

concentrations of air pollutants were measured in 2012, while the predictor data such as household 539 

density were sourced from 2011 databases and industrial areas were obtained from 2009 databases.  540 

Data on predictors that are collected from the same year as when the monitoring occurred can optimize 541 

the predictive ability of models and enhance generalizability as the quality of predictor data at specific 542 

time periods can affect the results of LUR models (Hoek, et al., 2008).  However, the pattern of those 543 

predictors in Perth was relatively consistent across the five-year period, suggesting that the final LUR 544 

models are generally representative for capturing the spatial variability in air pollutants throughout the 545 

year 2012. 546 

    547 

5. Conclusion 548 

Despite the relatively low concentrations, LUR modelling for PM2.5 and PM2.5Abs and the 549 

elements of PM10 and PM2.5 is possible for such locations.  The LUR models characterised the local 550 

traffic related air pollution as the predominant source to explain the spatial variability of airborne 551 

particulate matters and the associated elements in Metropolitan Perth.   This study represents one of the 552 
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few LUR studies investigating PM elements and it will assist researchers in assessing the health impacts 553 

of the components of PM as well as PM size fractions. 554 

 555 
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